Rumus Bangun Ruang: Kubus, Limas, Kerucut hingga Tabung

Rifan Aditya Suara.Com
Rabu, 23 Juni 2021 | 16:46 WIB
Rumus Bangun Ruang: Kubus, Limas, Kerucut hingga Tabung
Rumus bangun ruang - Ilustrasi bangun ruang, kerucut, kubus, balok, bola (envato)
Follow Suara.com untuk mendapatkan informasi terkini. Klik WhatsApp Channel & Google News

Suara.com - Rumus bangun ruang merupakan salah satu materi pelajaran matematika yang harus dipahami. Bangun ruang merupakan bangun tiga dimensi yang memiliki ruang dan dibatasi oleh sisi-sisinya. Bangun ruang memiliki volume, isi, dan tiga komponen, yaitu sisi, rusuk, dan titik sudut. Terdapat rumus-rumus bangun ruang yang dibagi menjadi dua macam, yakni bangun ruang sisi datar dan lengkung.

Bangun ruang sisi datar merupakan bangun tiga dimensi yang memiliki sisi berbentuk datar. Bangun ruang sisi lengkung merupakan bangun tiga dimensi dengan bagian sisi berbentuk melengkung. Kategori bangun ruang sisi datar, meliputi kubus, balok, prisma segitiga, dan limas. Sementara itu, yang termasuk dalam bangun ruang sisi lengkung, yakni tabung, kerucut, dan bola.

Dilansir dari berbagai sumber, berikut rumus bangun ruang dan contoh soalnya.

1. Rumus Bangun Ruang Kubus

Baca Juga: Rumus Trapesium Lengkap dengan Jenis dan Ciri-cirinya

Bangun ruang kubus memiliki 6 sisi, 12 rusuk, dan 8 titik sudut.

  1. Luas Kubus
    Rumus Luas Kubus, yaitu: L = 6 x s
  2. Keliling Kubus
    K = 12 x s
  3. Volume Kubus
    Rumus volume kubus, yaitu: V = s x s x s (s3)
    L adalah luas, V merupakan volume, s yaitu sisi.

Contoh soal rumus kubus:

Soal: Sebuah kotak kapur memiliki sisi 10 cm, berapa luas, keliling, dan volumenya?

Jawab:

L = 6 x s = 6 x 10 = 60 cm2.

Baca Juga: Rumus Pythagoras: Sejarah, Rumus dan Cara Pengaplikasiannya

K = 12 x s = 12 x 10 = 120 cm.

V = s x s x s = 10 x 10 x 10 = 1000 cm3.

2. Rumus Bangun Ruang Balok

Balok merupakan bangun ruang yang terdiri atas 6 sisi, 12 rusuk, dan 8 titik sudut.

  • Luas balok, yaitu: L = 2 x [(p x l) + (p x t) + (l x t)]
  • Keliling balok = K = 4 x (p + l + t)
  • Volume balok, yaitu: V = p x l x t

P merupakan panjang, l adalah lebar, K sama dengan keliling, dan t yaitu tinggi.

Contoh soal rumus balok:

Sebuah bangun ruang memiliki panjang 24 cm, lebar 10 cm, dan tinggi 5 cm. Berapa volume bangun ruang tersebut?

Pembahasan:

L = 2 x [(p x l) + (p x t) + (l x t)]

= 2 x [(24 x 10) + (24 x 5) + (10 x 5)]

= 2 x [240 + 120 + 50] = 820 cm2.

K = 4 x (p + l + t) = 4 x (24 + 10 + 5) = 156cm

V = p x l x t = 24 x 10 x 5 = 1.200 cm3

3. Rumus Bangun Ruang Prisma Segitiga

Prisma segitiga memiliki 2 sisi, 9 rusuk, dan 6 titik sudut.

Rumus Luas dan Volume Prisma Segitiga:

  • L = (2 x luas alas) + (keliling alas x tinggi prisma) atau L = [2 x ((alas x tinggi) : 2)] + (keliling alas x tinggi prisma).
  • K = (2 x keliling alas) + (3 x keliling sisi)
  • V = [(alas x tinggi) : 2] x tinggi prisma.

Contoh soal: Sebuah bangun ruang prisma memiliki tinggi 12 cm, panjang sisi alas segitiga 6 cm, 8 cm, dan 10 cm. Berapa luas dan volume bangun tersebut?

Pembahasan:

V = [(alas x tinggi) : 2] x tinggi prisma = [(6 x 8) : 2] x 12 = 288 cm3.

L = [2 x ((alas x tinggi) : 2)] + (keliling alas x tinggi prisma) = [2 x ((6 x 8) : 2)] + (6 + 8 + 10) x 12 = 336 cm2.

4. Rumus Ruang Limas dengan alas Persegi

Bangun ruang limas dengan alas berbentuk persegi memiliki 5 sisi, 8 rusuk, dan 5 titik sudut.

Rumus Limas Persegi

  • Luas Limas = jumlah luas sisi tegak + luas alas persegi = 4 x (1/2 x a x t) + (s x s)
  • Volume limas = 1/3 x luas alas x tinggi
  • Keliling limas = 4 x s

Contoh Soal: Sebuah bangun ruang berbentuk limas segi empat memiliki panjang alas 18 cm, tinggi sisi 24 cm, dan tinggi limas 12 cm. Berapa volume dan luasnya?

Jawab: Volume limas = 1/3 x (sisi x sisi) x tinggi = 1/3 x (18 x 18) x 12 = 1/3 x 324 x 12 = 1.296 cm³

L = 4 x (1/2 x a x t) + (s x s) = 4 (1/2 x 18 x 24) + (18 x 18) - 4 (864 + 324) = 4752 cm2.

5. Rumus Bangun Ruang Tabung

Bangun ruang limas dengan alas berbentuk persegi memiliki 3 sisi, 2 rusuk, dan 0 titik sudut.

Rumus Tabung:

  • Luas alas = luas lingkaran = πr^2
  • Keliling alas tabung = 2 x π x r atau π x d
  • Rumus Volume tabung = luas alas (lingkaran) x tinggi = (π x r2) x t

π yaitu phi = 3,14 atau 22/7

r yaitu rusuk

d yaitu diameter, 2 x rusuk

6. Rumus Bangun Ruang Kerucut

  • V = 1/3 x π x r^2 x t
  • L = π x r x (r + S).
  • K alas = 2 x π x r atau π x d

7. Rumus Bangun Ruang Bola

  • V = 4/3 x π x r^3
  • L = 4 × π × r²

Itulah beberapa rumus bangun ruang dan penjelasannya, mulai dari kubus, balok, prisma, limas, kerucut, tabung dan bola.

Kontributor : Lolita Valda Claudia

BERITA TERKAIT

REKOMENDASI

TERKINI